Electron transfer between hydrogen-bonded pyridylphenols and a photoexcited rhenium(I) complex.

نویسندگان

  • William Herzog
  • Catherine Bronner
  • Susanne Löffler
  • Bice He
  • Daniel Kratzert
  • Dietmar Stalke
  • Andreas Hauser
  • Oliver S Wenger
چکیده

Two pyridylphenols with intramolecular hydrogen bonds between the phenol and pyridine units have been synthesized, characterized crystallographically, and investigated by cyclic voltammetry and UV/Vis spectroscopy. Reductive quenching of the triplet metal-to-ligand charge-transfer excited state of the [Re(CO)3(phen)(py)](+) complex (phen = 1,10-phenanthroline, py = pyridine) by the two pyridylphenols and two reference phenol molecules is investigated by steady-state and time-resolved luminescence spectroscopy, as well as by transient absorption spectroscopy. Stern-Volmer analysis of the luminescence quenching data provides rate constants for the bimolecular excited-state quenching reactions. H/D kinetic isotope effects for the pyridylphenols are on the order of 2.0, and the bimolecular quenching reactions are up to 100 times faster with the pyridylphenols than with the reference phenols. This observation is attributed to the markedly less positive oxidation potentials of the pyridylphenols with respect to the reference phenols (≈0.5 V), which in turn is caused by proton coupling of the phenol oxidation process. Transient absorption spectroscopy provides unambiguous evidence for the photogeneration of phenoxyl radicals, that is, the overall photoreaction is clearly a proton-coupled electron-transfer process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photochemical Tyrosine Oxidation with a Hydrogen-Bonded Proton Acceptor by Bidirectional Proton-Coupled Electron Transfer.

Amino acid radical generation and transport are fundamentally important to numerous essential biological processes to which small molecule models lend valuable mechanistic insights. Pyridyl-amino acid-methyl esters are appended to a rhenium(I) tricarbonyl 1,10-phenanthroline core to yield rhenium-amino acid complexes with tyrosine ([Re]-Y-OH) and phenylalanine ([Re]-F). The emission from the [R...

متن کامل

Photoinduced water splitting via benzoquinone and semiquinone sensitisation.

The splitting of water into H˙ and OH˙ radicals by sensitisation of a redox-active chromophore with sunlight may eventually become a viable way of producing unlimited, clean and sustainable energy. In this work, we explore the possibility of photo-oxidation of water via sensitisation of benzoquinone with ultraviolet (UV) light in the hydrogen-bonded complex of benzoquinone with a single water m...

متن کامل

DFT-PBE, DFT-D, and MP2 Studies on the H2O•••HNH and HOH•••NH2 Hydrogen Bonds in Water-Aniline Complexes

DFT-GGA method of Perdew-Burke-Ernzerhof (PBE) is used with aug-cc-PVTZ, 6-311++G**, and Def2-TZVP large basis sets to study the hydrogen bond interactions between oxygen lone pair as a donor electron with hydrogen atom connected to the aniline’s nitrogen as an electron acceptor (H2O···HNH-Ph), and nitrogen lone pair with hydrogen of water molecule (Ph-H2N···HOH...

متن کامل

Crystal structure of cis-bis­(μ-β-alanine-κ2 O:O′)bis[tri­chlorido­rhenium(III)](Re–Re) sesquihydrate

The structure of the title compound, [Re2Cl6(C3H7NO2)2]·1.5H2O, comprises a dinuclear complex cation [Re-Re = 2.2494 (3) Å] involving cis-oriented double carboxyl-ate bridges, four equatorial chloride ions and two weakly bonded chloride ligands in the axial positions at the two rhenium(III) atoms. In the crystal, two complex mol-ecules and two water mol-ecules constitute hydrogen-bonded dimers,...

متن کامل

Local polarity and hydrogen bonding inside the Sec14p phospholipid-binding cavity: high-field multi-frequency electron paramagnetic resonance studies.

Sec14p promotes the energy-independent transfer of either phosphatidylinositol (PtdIns) or phosphatidylcholine (PtdCho) between lipid bilayers in vitro and represents the major PtdIns/PtdCho transfer protein in the budding yeast Saccharomyces cerevisiae. Herein, we employ multi-frequency high-field electron paramagnetic resonance (EPR) to analyze the electrostatic and hydrogen-bonding microenvi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemphyschem : a European journal of chemical physics and physical chemistry

دوره 14 6  شماره 

صفحات  -

تاریخ انتشار 2013